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The fluctuations of the finite-size corrections to the free energy per site of the 
random energy model (REM) and the generalized random energy model 
(GREM) are investigated. Almost sure behavior for the corrections of order 
(log N)/N is given. We also prove convergence in distribution for the corrections 
of order 1IN. 
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1. I N T R O D U C T I O N  

Random energy models (REMs) were introduced by Derrida (1) as simple 
and solvable models for spin glasses. Spin glasses are disordered magnetic 
systems and a mean field description of such system is given by the 
Sherrington-Kirkpatr ick (SK) model. (2) For  a recent review we refer to the 
Mezard et aL (3) and references included there. 

In their studies of the SK model, Mezard et al. (4) discuss the role of 
the fluctuations of order 1IN of the free energy to define the weights of the 
pure states of the model. They also sketch a self-consistent approach that, 
under a suitable hypothesis for these weights, should allow one to get the 
replica symmetry-breaking solution of the SK model without introducing 
the replicas. (s~ 

From this analysis, a picture emerges where the study of fluctuating 
quantities plays a major  role. An example is the distribution of overlap- 
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pings for the SK model3 6) Let us also mention the work of Derrida and 
Toulouse (7) for the REM and de Dominicis and Hilhors(8) for the 
generalized REM (GREM). 

In this paper we study the finite-size correction to the free energy per 
site for the REM and prove that if fl > tie, fluctuations exists which are 
sample dependent. This clarifies a point of the work of Olivieri and 
Picco. I1~ Moreover, we find a scaling which allows us to prove that in the 
limit N--, oo the Boltzman factors are realizations of a Poisson point 
process as stated by Ruelle. (9) 

The case of the GREM is also considered. 
In Section 2 we state the results in a precise form, and in Section 3 we 

give the proofs. 

2. DEFINITIONS AND RESULTS 

Let (fL Z, P) be a probability space and assume that there exists a 
family {Xi}, i =  1, 2,..., of independent normalized Gaussian random 
variables that are defined on (f~, ~-, P). Let fl be a positive real number; 
we define the random variables 

and 

2 N 

ZN(fi)= Y', exp flN1/zxi (2.1) 
i = 1  

FN(fl) = l l o g  Zu(fl) (2.2) 

where N =  1, 2,.... Let us define also tic = (2 log 2) 1/2 and 

~ fl2/2 + fl2c/2 if 0 <. fl ~ tic 
F(fi) = (flflc if fl ~> tic 

(2.3) 

It is proved in ref. 10 that Vfl > O, Fu(fl) converge almost everywhere to 
F(fl). Moreover, it follows from Proposition 5 of ref. 10 that if fl ~< tic, then 

lira ZN(fl)e -NF(fl) = 1 almost everywhere (2.4) 
N ~ v o  

Let us define for fl > 0 

tic log[ZNe NF(fl)'] 
afu(/~)  = 

fl log N 

WN is the finite-size correction of order (log N)/N to the free energy. 

(2.5) 
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The following theorem states our results on 
finite-size corrections of order (log N)/N to the free energy per site. 

Theorem 1. I f 0 < f l < f l c ,  

If fl~>flc, 

and 

the fluctuation of the 

lim ~r = 0 almost everywhere (2.6) 

lim sup J'~N(fl) = 1/2 almost everywhere (2.7) 

lim inf H~v(fl) = - 1/2 almost everywhere (2.8) 

As a consequence of Propositions 2 and 4 of ref. 10 we get, 

where 

2 N 

-/~I N) = Z { >/0xp(e,/a~- e//~ iog/~a2~),/2} (r (2.10) 
i = 1  

10 if x~>e 
/>~(x) = if x < 

J V ' I  N) is related to the counting measure for the point process defined by 
(~N~2N The following theorem gives the sample-dependent fluctuations of i J i = l "  

the Boltzmann factors and it is equivalent to the convergence in law of the 
point process (IN). Definitions and basic results for point proccesses can be 
found in Neveu. ~ 

T h e o r e m  2. The ~ / ' ( N )  converge in law to the counting measure of 
a Poisson point process with intensity exp( - t )2 (d t ) .  

Remark. By a simple change of variable this mean that CN converge i 
to a Poisson point process with intensity 

~c )o(dx) 
fl x-1 +ejt3 "~ >o(X) 

where 2(dx) is the Lebesgue measure. 

and 

Remark. 
if fl > tic, limN ~ ~ ~Ut%(fl) = --1/2 in probability; in fact, the probability that 
[~,Ugu(fl) + 1/2[ ~ e goes to one like 1 - cte/(log N) 1 +'. 

This remark suggests the natural scale to study the Boltzmann factors 
exp flN1/2Xi when fl > tic. We define 

~ N= exp ( flN1/zxi- flflcN + ~ ~ log N) (2.9) 
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This is the assumed distribution for the "Boltzmann factor" in the 
paper of Ruelle (9) and gives the interpretation of the parameter: p =//c. 
This distribution was also introduced by Mezard et al. (4) and De Dominicis 
and Hilhorst (8) on the basis of heuristic arguments. After completion of this 
work we discovered that Theorem 2 is not new and appears in Leadbetter 
et al. ~12) (see Theorem 1.5.3 and Theorem 2.11). Since our proof is different 
from theirs and we need Lemma 4 for proving Theorem 3, we keep it for 
convenience. 

In the case of the GREM we have to consider cascades (9) instead of 
Poisson point processes. We will consider for simplicity the case of the 
GREM with two hierarchies; the general case is an easy generalization as 
long as the number of hierarchies n is smaller than N / ( l o g N ) l + ~ ;  see 
Capocaccia et al., ~11) where such a restriction is discussed. Let us now 
define the GREM with two hierarchies. Let (ai);= 1.2 and (ai)i=l, 2 be real 
positive numbers such that log al + log a2 = log 2, al + a2 = 1, and let 
( ~ , Z ,  P) be a probability space such that for any N ~ *  there exists 
two families {Ski}, kl = 1 ..... a~ v, and {Sk~k~}, kl = 1,..., a N, k 2 = 1,..., a N, of 
independent normalized Gaussian random variables that are defined on 
(~, Z, P). Let us define, as previously, renormalized Boltzmann factors: 

{ 1 ~al/2 l~ N ' (  (2 log al)U2~ ~kl= exp [ J ( N a l ) l / 2 e k - [ 3 a l / 2 ( 2 1 o g a l ) l / 2 N +  2 (2.11) 

{ 1 ~__a~/2 log N ] 
~k, k2 = exp B(Na2)l/2~kxk2 -- flal/2(2 log a 2 ) m N q  - 2 (2 log a2)1/2 ~ (2.12) 

f fla)/2t log(4n log ai)u2] 
G~v(t) = e x p  flal/2 (2.13) 

(2  l o g  a i )  1/2 ( - '2~og ~ / )  i ~  J 

An illuminating way to consider cascades (9) is to consider the equivalent of 
the counting measure JVI N), (2.9), namely the two-parameter process 

~1 ~ ~ 
JV~N),~,t2---- ~ "~ >-eN~t2)(r ) ~  ~ "~ ~>e~v('2)(~*~,~2) (2.14) 

kt = 1 kl = 1 

If A is a rectangle [ t, t' ] • Is, s' ], t <  t', s < s', we define 

t, s t', s' t, s' g', s 

JV~ N) counts the number of points which fall in A. Let us remark that 
without the rescaling of the Boltzmann factor Capocaccia et al.(l~) proved a 
strong law of large numbers for similar quantities in their proof of the 
existence of the infinite-volume free energy for the GREM. 

The following theorem is our main result for the GREM. 
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T h e o r e m  3. The two-parameter stochastic process , / ~ (N)  converge tl I2 
in law to a process ~,,xt: such that for any finite family of rectangles 
(zJi)N= 1 ~ ([ti, ti+l] X [Si, Si+l] with ti<~ti+ 1 ~</ i+2 ,  S i~S i+ l  <~Si+2...) 
the random variables ~ , . . . ,  ~ ,  are independent and 

E(exp( - SJVtt ,,2)) 

= exp [ + exp( - t 1 ) ( e x p  { [ + exp( - t2)] [exp( - S) - 1 ] } - 1 )] (2.15) 

Remark. We emphasize that for fixed tl the process ~ t l , t  2 is not with 
independent increments with respect to t2, that is, if t; > t2, JV~,I,2- JV~,I, ~ 
and ~,,16 are not independent random variables, which will be the case for 
the counting measure of a Poisson point process on N § x N +. 

3. PROOFS 

Proof of  Theorem 1. 
ref. 10 we get 

log N 

As a direct consequence of Proposition 2 of 

\ 
for all but finite number of N) = 1 (3.1 ) 

Moreover, using the fact that if A n is a sequence of events such that 
lim P(An) = 1 and if we define 

{A, infinitely often } = {A, i.o. } = ~ U {A~ } 
n > ~ l  k = n  

we get 

P(Ani .o . )=  lira P ( [ ~  Ak)~>nlimooP(A.)=l 
n ~ o o  k = n  

and since by Proposition 4 of ref. 10 we have 

lira P Zxexp[-Nf(~)] ~<exp--~  

we get 

( .)i o) \ZN exp[ -- NF(fl)] ~< exp - 

Therefore, using (3.1) and (3.3), we get lim inf YN(fl)= --1/2. 

(3.2) 

(3.3) 

822/54/1-2-34 
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Using Proposition 2 of ref. 10, we get 

( log N [ 1  e) 
P \ Z N  exp[ --F(f l)U] ~< exp + fi ~ k~ + 

/ 

for all but a finite number of N )  = 1 

This implies lira sup ~u(fl)  ~< 1/2 almost surely. 
In order to prove that lim sup ~N(fl) = 1/2, since 

Z N exp[ - F ( f l ) N ]  >~ exp{f lNm( Max X ~ -  flcN1/2)} 
i =  1 - - 2  u 

it is sufficient to prove 

p ,=Max, 2 Xi> cN' =1 

Let us write 

B N = I  Max X , > ~ f l c N ' / 2 + ( ~ - e )  l ogN] ,  
(i=*-2~ f lcNm J 

and remark that 
2 N 

BN---- U Ai, 2u 
i = 1  

where 
[1 "~ l o g N )  

Ai,2s= X i > ~ f l c N 1 / 2 + ~ ~ - e ) ~  

In order to prove P(lim sup BN) = I it is sufficient to prove 

lim lira P c = 0 
m ~ < z o  n ~ o o  k 

or similarly 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

lira lim P " = 0  (3 8) 
m ~ o o  n ---> oo k i 1 

It is not too difficult to see that 

A i, 2k -- A ~i 2k ~ A i~ 2k 
k = m  i = 1  i 1 " , k = m  ' / - I  L - i = 2 r n + l  k ~  + 1  

I 7 ( )  )] ) �9 .. n Ai~,2 k .. .  ~ Ai~,2, 
I - i = 2 r n + s + l  k =  l + s  \ i = 2 n - l + l  

(3.9) 
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Now, since the function 

1 log X 
f ( x )  = (2x log 2) 1/2 + ~  6 Lxl/2 

is strictly increasing if X is large enough, we get: 
if m is large enough 

AiC~- Ai,2m+,+L (3.10) 
k m + s + l  

Therefore, using independence, (3.9), and (3.10), we get 

P A~2k 
k i=1  

H p(Ac2m+l) 
i ~ t - i = 2 m + l  

x P(A~2 . . . . .  ~) ,[J~ P(A~2. ) (3.11) 
Li=2m+S+l  i ~ 2  +1 

Using now 

and writing 

we get 

Since 

P(A~I2m ) = 1 - P ( A i ,  2m ) ~ e x p [ -  P ( A i ,  2m)] 

( (~ '~ logm~ 
P(Ai, 2m ) = c(m) = Prob X>~ ml/2flc + - ej  m--T~ J 

(3.12) 

(3.13) 

it is not difficult to check that there exists a constant C such that if m is 
large enough, VK> m, 2 k- ~C(k) >~ C/K ~ -~. Therefore 

lira ~ 2 k - l c ( k ) =  +oo 
n~ct~ k = m +  1 

from which, using (3.14), we get (3.8) and this ends the proof of Theorem 1. 

f x  ~-~176 U 2 X X 2 exp ---~- du > ~ exp - ~ -  (3.15) 

P A,~2k ~<exp -- 2mc(m)+ 2 k lc(k) (3.14) 
k = m  i= k = m + l  
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Proof of Theorem 2. The proof of Theorem 2 will be a direct con- 
sequence of the two following lemmata: 

k e m m a  4. Let X be a Gaussian normalized random variable, and 

gu(t) = NU2fl C 1 log flc(27~N) 1/2 t 
tic N1/2 -t flcNU 2 (3.16) 

where/~c = (2 log c~) ~/2 and c~ is a real number > 1. 
Then 

lim ~Np(x >~ gN(t)) = exp(-- t) (3.17) 
n ~ o 3 _  

l . e m m a  5. Let 0 < t p < t p  1< .-- < t l < t o =  + ~  be a sequence of 
real, positive numbers and {Si}f = 1 a sequence of real numbers. Then 

lim E exp - Sk('/V'I N ) -  ,k-~ [ )  
r t ~ c o  1 

= lim E exp - S , ( Y l  N) -  ,~_,,j) 
k = l  n ~ o o  1 

P 

=exp  ~ [exp(Sk)-- 1 ] [ exp( - - t~_ l ) - - exp( - - tk ) ]  (3.18) 
k = l  

Proof of Lemma 4. Using the fact that for a Gaussian normalized 
random variable 

P(X>~ t) <<. (2~t)-1/2 e x p ( -  t2/2) (3.19) 

it is not difficult to check that if t2/N and (log N)2/N are small enough, 
then, for some constant C1, 

~N e x p ( -  g~v/2)(2z~),/2 gN(t) exp(--t) <<-[2t+t2 ( 1 ~  N)2 ] L ~<-~- ' -  N + C1 e x p ( -  t) (3.20) 

On the other hand, for a Gaussian normalized random variable 

p(x>~t)>exp(-t2/2)  ( 1) 
(27t)~12 t 1 - ~  (3.21) 

and if N is large enough, there exist a constant C2 such that g2N(t ) >~ N/C2. 
Therefore, using (3.20), we obtain 

(2g)m gjv(t) 

From (3.20) and (3.22) we get the result. 
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Proof of Lemma 5. Since 

E (kl)__ exp [ -- Sk(JV"N) -- JV"N~)I)]) 

= E exp[--Sk(~ ~gN<,~(Xi)- ~ ~>gN(tk_l)(Xi))] 
i 1 

(3.23) 

and the random variables which appear in the bracket {. } are independent 
for different indices i, writing 

- -  ~ gN(tk 1), g N ( t k ) ( X i )  = ~ ~ gN(tk) ( X i )  - -  ~ >1 gN(tk-1 ) ( X i )  

we get 

Since 

we get 

exp[a~ A(X)] = 1 + (e " -  1)~A(X ) 

P 

1-I e x p [ S J  gu<'k-1), gu(tk)(X) ] 
k = l  

P 

= l--I {1 + [ e x p ( s k ) -  1] ~gu(,k_,),gu~tk)(X)} 
k = l  

Using the fact that the intervals 

(3.24) 

(3.25) 

Therefore (3.23) is equal to 

k = l  

(3.27) 

P 

1 + ~, (e s k -  1) ig~(~k_,),gN(t,)(X) (3.26) 
k = l  

[gN(tk,_l) ,  gN(tk,)[ and [gN(tkj_l)  , gN(tkj)[ 

are disjoint if i ~ j, if we expand the previous product, the only nonzero 
terms which remain are 
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Since if Ix[ < 1 

and 

Galves et  al. 

X 2 1 
Ilog(1 + X) - X[ ~< (3.28) 

2 1 - 1 X l  

lim c~ ~v E(I gu(t~_~), gu(tk)(X)) = exp( - t k_ 1) - exp( - tk) 

then by Lemma 4, for fixed p ~> 1 and {Sk}, {tk}, k = 1,..., p, (3.28)implies 
that there exists a constant  Cp such that, if N is large enough, then 

l o g ( l +  ~ (eSk--1)F-(~gN(tk_~),gN(t,)(X)) 
k = l  

-- ~ (e s~-  1) E('~gN(,, ,).gN(,,)(X) 
k = l  

~< C P ~ 2  (3.29) 
~ 2 N ( 1  -- C ,  ,~/o~ N) 

where 
P 

= ~ (e sk-1) (e- tk  l _ e - , , )  
k = l  

Therefore we get 

lira I: exp[ - -Sk(X*k  Y,k  1)] 
N ---~ oo 1 

P 

= e x p  ~ [ e x p ( S k ) -  1] [exp( -- tk_ l) -- exp( -- tk)] 
k = l  

concluding the proof  of Lemma 5. 

Proo[ of  rhoorem 3. Let us first prove formula 
difficult to check that 

lZ(exp [ - S jV(m q ) tlt2A 

= H: exp - S ~  >~e~(,,)(~k~) ~ ~ >~(,2)(~k~.k2) 
k = l  k 2 = l  

We remark that the random variables 

qk~=exp - -S~ >~,(t,)(~k~) ~ ~ >~(t~)(~k,.k0 , 
k2= I 

(3.30) 

(2.16). It is not 

(3.31) 

kt = 1,..., a~ 

(3.32) 
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are independent and identically distributed. Therefore 

"(N) E(exp [ - S~4/,,,2] ) 

E exp - S ~  >gg)(,)(e) ~ ~>g~)(t~)(ek2) (3.33) 
k2 ~ 1 

where e and ek2,< = 1,..., ~ ,  are independent, normalized, Gaussian random 
variables and 

g(iN)(t ) = (N2 log 0~i) 1/2 log(47rNlog ~i)1/2 t 
(2N log ot~) ~/2 I- (2Nlog ai) 1/2 

Now for f i x e d  ~ the random variables 

exp - S ~  ~>~k~o(a) ~ ~ ~>g~),2)(~k2) , k2=  i,..., a~ 
k2=l 

are independent, identically distributed; therefore, if e and r/ are indepen- 
dent, normalized, Gaussian random variables, (3.33) is equal to 

[E~{E, e x p [ - S ~  >~g~)(,)(e)~ >g~)(,:)(q)]}~; (3.34) 

Using 

e x p [ - - s ~  /~g(N1)(/l)(~)~ )g(N2)(t2)(~)] 

= 1 + (e - s -  1)~ ~>g~)(,l)(e)~ ~>g~)m)(r/) (3.35) 

and integrating with respect to r/, we get 

(3.34)= [[E.{1 + ( e - ' -  1)1] ~g~,(to(e)E,~ ~gf,(,:)(q)}~f (3.36) 

Since 

(1--x)~N~<exp(--XC~ v) for x > 0  

we get 

(3.36) ~< [ ~  exp{~N~(~ >/g~(,2)(q))[exp( -- S) - 1 ] 1//> g~(~)(e)} ]~f 

(3.37) 

(3.38) 

Writing 

~NE,(~ ~>gf)(,2)(r/)(e - s -  1) -- SN 

= e - ' 2 ( e  s _ 1 ) 

we have that Lemma 4 implies that l i m / ~  ~ SN = S. 
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Using 

~(exp[SN~ >~g~)(tO (e)]) 

= 1 + [ e x p ( + S u ) - -  1] ~('0 ~>g~)(t,)(~)) (3.39) 

and (3.37) we get 

(3.38) ~< exp + ~ufF~(~ .>g~(tl)(~)) exp [ (+  SN)-- 1] (3.40) 

Again by Lemma 4 

lim E(exp( - SX(N)~ t i t21!  

~< exp[-+exp(- t l ) (exp{ + e x p ( -  t 2 ) [ e x p ( - S ) -  1]} - 1)] (3.41) 

Now using (3.28), we get 
N 

(2) ~2 {1 + [ e x p ( - S ) -  114 >~g~l(,1)(g) E,({ .>g~, (,2)(t/))} 

/> exp{ [ e x p ( - S )  - 1] eUw~({ ag~,(,2)(r/)){ .>g~,(,l)(g)} 

X 1 -- [ e x p ( - S ) -  1] 211 - E,({ ~ g ~ , = ) ( q ) ) l e x p ( - S ) -  11] 

(3.42) 

Calling the term into the large bracket [ - ]  = qN(S, t2) by Lemma 4, it is 
easy to check that 

- - S N  = (e s 1) ~U~,({ ~>g(N2)(t2)(.)) qN(S, t2) (3.43) 

goes to (e - ~ -  1)e ,2= ~ when N goes to infinity. Therefore 

(3.36) >~ {E,(exp[---SN~ .>g~(t,)(e)])} U 

=exp[-~Ulog{1 + [exp(--SN)--  lIE({ .>g~(,,)(e))}] (3.44) 

and by a similar argument as at the end of the proof of Lemma 5 we get 

lim E(exp [ -  S X I ~ ] )  
N ~ o o  

~> e x p [ - ( e x p - t l ) ( e x p { [ + e x p ( - t 2 ) ] [ e x p ( - S ) -  1]} - 1)] (3.45) 

Collecting (3.41) and (3.45), we get (2.14). 
It remains to prove that Xa, ..... JV~. are independent random 

variables; to do so it is sufficient to show that for all p ~> 1, for all positive 
real numbers rj, j =  1,...., p and for any family of rectangles 3 j =  
[t;, tj+ 1[ X [Sj, Sj+I ] -  , with 

t j<tj+,<tj+2, V j = I  ..... p - - 2  

Sj<Sj+I<Sj+2~, Yj= 1,..., p - -  2 
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one has 

lim E exp r~X ) = lira E ( e x p [ - r j X  )]) (3.46) 
N ~ o ~  1 j =  N ---* oo 

Since it is not difficult to check that 
~f ~i ~ 

x ~N~- ~ ~e~'.j~.g~.j+l~(~kx) ~ l~g~j~.~+~l(~k,~) Aj - -  

k I ~ 1 k 2 = 1 

we get 

e x p [ - r / U ~ j  ] = I z exp[- r j l~)(ek~)]  ~A2(,~klk2) 
k 1 j = l  k 2 = l  

(3.47) 
where 

A) = [g~)(tj), g~!(t]+ 1)[ 

L / I=  [-g~)(sj), g~)(sj+ 1)[ 

1, if xeA~ 
1 ~(x) = 0, otherwise 

Using the independence, (3.47) is equal to 

expl--rj~ ~)(~)3 ~,~(ek~) (3.48) 
k l =  1 

where e and s~, k2=  1,..., c~ N, are independent, normalized, Gaussian 
Random variables. 

Repeating what we did in the proof of Lemma 5, we get 

(3.48)=I~-~({~-~(j~= exp[-rjl~)(~)~)(~l)])}~)] ~( (3.49) 

where e and r/ are independent, normalized, Gaussian random variables. 
Using 

exp[--rj. ~4(e ) ~ 4(t / )]  = 1 + [ e x p ( - r j ) -  1] 14(s  ) ~a~(q) 

and the fact that A] and A~ are disjoint if jCk, we expand the product  
[I~=~ in (3.49) and get 

E~ , exp[ - - ( / l a ) (~  ) 1 4(t/)  ] 

{ ( "  )} =exp  c~N1og 1 + ~  [ e x p ( - - r j ) - - l ] l ~ / ( s ) ~ : , ( ~ 0 1 ) )  (3.50) 
j = l  
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Repeating what we did for (3.38) and (3.42), we get 

(3.50) = exp [ e x p ( - - r i ) - - l j ~ ) ( e ) ~ u ~ _ ~ ( ' ~ ( r l )  1+ CN 
j 1 

where CN is a bounded function of Si, ti, r~, i = 1 ..... p. Therefore if 

(3.51) 

we get 

P 

(3.50) = 1-[ exp[ryV)3~)(e)] 
j = l  

P 

= l-I {1 + [exp(PJ N)) - 1] ~)(e)}  
j = l  

(3.52) 

Since A) and A~ are disjoint i f j : / :k ,  expanding the product, we get 

P 

(3.52)= 1 + ~ [exp(f}N)) - 1] ~) (e )  
j = l  

Therefore 

(3.49)= 1 + [exp(/}N)) - 1] ~: (~ l (e) )  
j = l  

j = l  

(3.53) 

Using (3.28), it is not difficult to check that 

P 

(3.53) = exp ~ (exp f}N)__ 1)eN~z ({ a)(e)(1 + Off-NBN)) 
j = l  

(3.54) 

where B N is a bounded function of fu. Since 

lim f~u)=(e rJ--1)(e-SJ--e sj+l) 
N ~ o o  

and 

lim ~ N ~ ( ~ ) ( e ) ) = e  O-e-'J+~ 
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we get 

i = 1  

P 

= 1-I exp[(exp--  t j - e x p -  tj+l) 
j = t  

• (exp{ [ e x p ( - r j ) -  1 ](exp - Sj - exp - Sj+ i)} - 1)] 

P 

= ]q lim E ( e x p [ - r j J V ~ ) ] )  (3.55) 
N ~  j = l  

and this ends the proof of Theorem 3. 
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